Инжиниринговый химико-технологический центр решает широкий спектр задач по разработке технологий и производству химических соединений и материалов. Многие наши и партнерские разработки защищены патентами - в данном разделе можно ознакомиться с ними.

Патенты

СВЯЗАТЬСЯ С НАМИ
ИНЖИНИРИНГОВЫЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ ЦЕНТР
СПОСОБ ПОЛУЧЕНИЯ ПОЛИФОСФАТА МЕЛАМИНА
Патент №2758253, 15.03.2021 г.
Изобретение относится к синтетической органической химии, а именно к способу получения полифосфата меламина.

Способ осуществляется в двухлопастном смесителе для перемешивания вязких сред и включает загрузку фосфорной кислоты, которую нагревают от 180 до 230°С, создавая разрежение от 0,93 до 0,7 бар насосом, перемешивают в течение 30-60 минут, с последующим порционным добавлением в полученный расплав меламина при температуре 280°С при перемешивании в течение 30-60 минут и при температуре 300°С с выдержкой смеси в течение 60 минут.

С последней порцией меламина добавляют оксалат аммония для поддержания pH среды продукта более 5. Мольное соотношение меламина к фосфорной кислоте и оксалату аммония составляет 1:0,5-2:0,08-0,24.

Изобретение позволяет получить полифосфат меламина с высокой термической стабильностью, остаточной массой после разложения не менее 80 %, рН 10 %-ной суспензии более 5, с использованием одного аппарата, без выделения промежуточных и конечных продуктов реакции и в отсутствие растворителя, а также больших водо- и энергозатрат.
СПОСОБ ПОЛУЧЕНИЯ ЦИАНУРАТА МЕЛАМИНА
Патент №2758252, 15.03.2021 г.
Изобретение относится к синтетической органической химии, а именно к способу получения цианурата меламина в водной среде из циануровой кислоты и меламина.

Процесс ведут в лопастном смесителе, с отводом отходящих газов в металлическую емкость, смешивая циануровую кислоту и аммиачный буферный раствор, состоящий из раствора аммиака с добавкой хлорида аммония, при рН 9,5-10,9, температуре от 50 до 80°С в течение 10-30 минут, с последующим добавлением меламина и повышением температуры до 100-130°С.

Далее температуру повышают до 150-170ºС и выдерживают до полного удаления буферного раствора, затем добавляют оксалат аммония и выдерживают смесь при температуре 200-250°С в течение 30-90 минут.

Мольное соотношение компонентов меламин/циануровая кислота/буферный раствор/оксалат аммония составляет 1:1-1,5:2,2-5:0,5-2.

Изобретение позволяет получить цианурат меламина с использованием одного технологического аппарата, с использованием минимального количества воды и отсутствием сточных вод.
СПОСОБ ПОЛУЧЕНИЯ ПРОДУКТОВ ОКСОСИНТЕЗА НА ОСНОВЕ ЭТИЛЕНА
Патент №2756174, 23.12.2020 г.
Настоящее изобретение относится к способу получения катализатора процесса на основе соединений кобальта и продуктов оксосинтеза на основе этилена, включающему взаимодействие этилена с окисью углерода и водорода в реакторе-автоклаве с использованием регенерируемой каталитической системы на основе соединений кобальта при повышенных давлении и температуре.

При этом в реактор последовательно загружают растворитель, соединение кобальта, азотсодержащее органическое основание, как пиридин или пиколины, с последующей продувкой азотом и подачей окиси углерода и водорода до достижения общего давления 10-14 МПа, нагреванием полученной смеси в реакторе со скоростью 10°C в минуту до температуры 140-170°С, выдержкой в течение 60 минут при давлении 12 МПа, охлаждением, сбросом избыточного давления до атмосферного, повторной продувкой азотом и насыщением реактора смесью окиси углерода и этилена до 8 МПа, добавлением водорода до достижения общего давления 9-10 МПа, нагреванием смеси до 90-170°С и выдержкой при данной температуре в течение 2-15 минут с последующим выделением продуктов оксосинтеза.

Предлагаемый способ позволяет переработать этилен и/или этиленсодержащие газы, образующиеся при каталитическом крекинге, пиролизе, дегидратации спиртов и других процессах, при более мягких условиях процесса - сниженных давлении и температуре.
БЕСФОРМАЛЬДЕГИДНЫЙ ФИКСАТОР БИОМАТЕРИАЛА ДЛЯ ГИСТОЛОГИЧЕСКИХ
И ИММУНОГИСТОХИМИЧЕСКИХ ИССЛЕДОВАНИЙ
Патент №2752505, 11.12.2020 г.
Изобретение относится к медицине и касается бесформальдегидного фиксатора биоматериала для гистологических и иммуногистохимических исследований, включающего щавелевый альдегид и воду, содержащего тетраметилолгликолурил для повышения качества фиксации, этиловый, изопропиловый или метиловый спирт для повышения проницающей способности, калия дигидрофосфат в качестве модификатора рН, при следующем соотношении, мас.%:

  • щавелевый альдегид - 8-10,
  • тетраметилолгликолурил - 1-3,
  • спирт - 10-60,
  • калия дигидрофосфат - 0,1-0,3,
  • вода до 100.

Изобретение обеспечивает создание бесформальдегидного фиксатора, который обладает фиксирующими свойствами и сохраняет структуру тканей, что проявляется в сохранении гистоархитектоники органа, структуры клеток, их ядер и цитоплазмы, а также обеспечивает фиксацию кусочков тканей размером 5-7 мм на всю глубину.
СПОСОБ ПОЛУЧЕНИЯ ПРОПИЛПРОПИОНАТА
Патент №2727507, 03.04.2020 г.
Изобретение относится к способу получения пропилпропионата в среде пропилового спирта с использованием этилена и окиси углерода на октакарбониле дикобальта с использованием азотсодержащего органического основания при повышенных давлении и температуре, где осуществляют подачу в реактор окиси углерода, этилена и водорода таким образом, что парциальное давление этилена составляет 1,0-1,6 МПа, водорода - 0,1-1,0 МПа, окиси углерода - 5,0-7,0 МПа, с последующим нагреванием реактора до температуры 140 °С и выдерживанием реакционной смеси в течение 3-15 минут, охлаждением, сбросом избыточного давления и выделением пропилпропионата.

Задача настоящего изобретения состоит в разработке способа получения пропилпропионата, с целью достижения максимальной селективности по пропилпропионату - 90-99%, а также максимальной конверсии этилена 97-99%.
СПОСОБ ПОЛУЧЕНИЯ ОКТАКАРБОНИЛА ДИКОБАЛЬТА
Патент №2729231, 02.04.2020 г.
Изобретение относится к химической промышленности, а именно к технологии получения октакарбонила дикобальта Co2(CO)8, применяющегося, в частности, для получения высокочистого металлического кобальта, нанесения кобальтсодержащих покрытий, катализатора процессов оксосинтеза.

В реактор последовательно загружают водный ацетат кобальта (II), гексан и воду с последующей продувкой азотом и подачей окиси углерода и водорода, нагреванием реакционной смеси в реакторе со скоростью 10°C в минуту, выдержкой в течение 60 минут при давлении 25-30 МПа и температуре 170°С, последующим разделением водной и органической фазы и выделением октакарбонила дикобальта из органической фазы путём низкотемпературной кристаллизации.

За счёт низкотемпературной кристаллизации повышается выход целевого продукта (97,6% от теоретически возможного) и его чистота.
СПОСОБ ПОЛУЧЕНИЯ МЕТИЛЭТИЛКЕТОНА
Патент №2731903, 27.03.2020 г.
Настоящее изобретение относится к способу получения метилэтилкетона, который используется в качестве растворителя различных лакокрасочных материалов и клеев, для депарафинизации смазочных масел и обезмасливания парафинов, а также в качестве сырья для пероксида метилэтилкетона, окислением бутан-бутиленовой смеси закисью азота.

Способ заключается в том, что отобранную фракцию метилэтилкетона с температурой кипения в интервале 65-90°С, полученную в результате фракционирования окисленной закисью азота бутан-бутиленовой смеси, подвергают окислению кислородом воздуха с объёмной скоростью его подачи не менее 2 мл в минуту на грамм фракции оксидата при температуре 40-80°С с последующим выделением метилэтилкетона путем фракционирования окисленной кислородом воздуха фракции метилэтилкетона.

Предлагаемый способ позволяет получить метилэтилкетон с содержанием основного вещества не менее 95%.
СПОСОБ ПОЛУЧЕНИЯ КАЛЬЦИНИРОВАННОЙ СОДЫ ИЗ ПРИРОДНОГО СОДОСОДЕРЖАЩЕГО СЫРЬЯ
Патент №2736461, 20.03.2020 г.
Изобретение относится к области химической технологии, а именно к способу получения кальцинированной соды из природного содосодержащего сырья для использования в стекольной промышленности, а именно в производстве прозрачной стеклянной тары для пищевой промышленности.

Способ включает карбонизацию водного раствора природной соды карбонизирующим газом с образованием суспензии бикарбоната натрия, фильтрацию и отмывку бикарбоната натрия с последующей его кальцинацией.

Перед карбонизацией проводят обработку водного раствора природной соды раствором гидроксида натрия с последующей фильтрацией выпавшего осадка.

Карбонизацию проводят в реакторе, содержащем лопастной статический смеситель для сред «газ-жидкость», путем диспергирования карбонизирующего газа под давлением 1,0-4,0 кг/см2в циркулирующий водный раствор природной соды при соотношении расхода газа и жидкости 1:50-1000.

Обеспечивается увеличение степени извлечения карбоната натрия из исходного сырья и снижение примесей железа в получаемой кальцинированной соде.
СПОСОБ ПОЛУЧЕНИЯ КУСКОВОГО СИЛИКАГЕЛЯ
Патент №2723623, 30.12.2019 г.
Изобретение относится к способам получения технического кускового силикагеля.

Способ получения кускового силикагеля включает смешивание раствора жидкого стекла с раствором серной кислоты при 15-25°C, гелирование раствора при температуре 15-30°C в течение 20-40 часов, измельчение, отмывку и термическую обработку.

Согласно способу рН раствора, полученного при смешении растворов жидкого стекла и серной кислоты, находится в диапазоне 0-4.

Силикагель обрабатывают водным раствором аммиака.

Изобретение обеспечивает получение кускового силикагеля, характеризующегося удельной поверхностью 200-400 м2/г, влагопоглощением более 1 см3/г и гидролитической стабильностью.
БЫСТРЫЙ И МАСШТАБИРУЕМЫЙ СПОСОБ ПОЛУЧЕНИЯ МЕЗОПОРИСТОГО ТЕРЕФТАЛАТА ХРОМА (III)
Патент №2718677, 25.09.2019 г.
Изобретение относится к области химии и химической технологии, а именно к координационной и синтетической химии металл-органических координационных полимеров, обладающих сорбционной емкостью, в частности к способу получения микропористого терефталата хрома(III), который может быть использован для создания адсорберов на CO2, паров органических соединений (бензол) или разделения газовых смесей CO2/N2, CO2/CH4.

Способ позволяет в результате синтеза получать мезопористый терефталат хрома(III) с высоким выходом продукта (до 80-90%), высокой удельной площадью поверхности (более 1000 м2/г) и объемом пор (выше 0,4 мл/г), с использованием минимального количества реагентов и растворителей и может быть масштабирован для промышленного производства.

Способ получения мезопористого терефталата хрома(III) включает этапы, на которых смешивают терефталевую кислоту и соль хрома(VI) в водной среде с добавлением серной кислоты при следующем количественном составе реакционной смеси, мас.%:

  • 5-15% соли хрома,
  • 7-17% терефталевой кислоты,
  • 2-8% серной кислоты,
  • 0,5-2% этилового спирта,
  • остальное - вода,

полученную смесь термостатируют при 200-220°С в течение 4-8 часов, выделяют осадок и проводят его очистку последовательной обработкой ДМФА, нагретым до 50-70°C, отделяют осадок и обрабатывают его спиртом, нагретым до 60-78°C, отделяют осадок и высушивают его на воздухе при 60-100°C, затем проводят активацию вещества при 150-220°C в вакууме в течение 3-6 ч.
БЫСТРЫЙ И МАСШТАБИРУЕМЫЙ СПОСОБ ПОЛУЧЕНИЯ МИКРОПОРИСТОГО
2-МЕТИЛИМИДАЗОЛАТА ЦИНКА
Патент №2719596, 25.09.2019 г.
Изобретение относится к области металлоорганических координационных полимеров, обладающих сорбционной емкостью, в частности к получению микропористого 2-метилимидазолата цинка, и может быть использовано для создания адсорберов на CO2, паров органических соединений (бензол) или разделения газовых смесей CO2/N2, CO2/CH4.

Способ получения микропористого 2-метилимидазолата цинка включает следующие стадии: растворение в водной среде 1-1,5% щелочи и 4-6% 2-метилимидозола, добавление 2-4% водного раствора соли цинка и перемешивание в течение 0,5-5 ч при 15-30°C.

Затем выделяют осадок, очищают его последовательными обработками водой и ацетоном с отделением твердого вещества на каждой стадии и высушиванием на воздухе при 100-150°C.

Очищенный материал подвергают активации в динамическом вакууме ниже 10-3бар в течение 1-6 ч при температуре 150-200°C.

Изобретение позволяет получить микропористый 2-метилимидазолат цинка с высоким выходом (до 80-90%), высокой удельной площадью поверхности (более 1000 м2/г) и объемом пор выше 0,4 мл/г.

Способ пригоден для производства материала в промышленном масштабе.
БЫСТРЫЙ И МАСШТАБИРУЕМЫЙ СПОСОБ ПОЛУЧЕНИЯ МИКРОПОРИСТОГО ТЕРЕФТАЛАТА ЦИРКОНИЯ(IV)
Патент №2719597, 25.09.2019 г.
Изобретение относится к области металлорганических координационных соединений с сорбционной активностью и может быть использовано для создания адсорберов на CO2, паров органических соединений (бензол) или разделения газовых смесей CO2/N2, CO2/CH4.

Способ получения микропористого терефталата циркония(IV) включает следующие стадии.

Диметилформамид (ДМФА) и муравьиную кислоту смешивают в соотношении 1:(2÷3), добавляют 0,5÷1% терефталевой кислоты и 1÷2% соли циркония, смесь термостатируют при 80÷150°C в течение 10÷50 часов при медленном перемешивании.

Полученный осадок промывают последовательно горячим ДМФА, горячей водой и ацетоном, затем сушат при 200-250°С.

Способ позволяет получать микропористый терефталат циркония(IV) с высоким выходом (до 80-90%), высокой удельной площадью поверхности (более 1500 м2/г) и объемом пор выше 0,6 мл/г.
СПОСОБ ПОЛУЧЕНИЯ МИКРОПОРИСТОГО ТЕРЕФТАЛАТА АЛЮМИНИЯ
Патент №2718676, 25.09.2019 г.
Изобретение относится к способу получения микропористого терефталата алюминия, включающему этапы, на которых смешивают 9-11 мас.% терефталевой кислоты и 4-6 мас.% щелочи с использованием растворителя - остальное, нагревают до 80–150 °С и мешают раствор до полного растворения терефталевой кислоты, затем добавляют 25-35 мас.% раствора соли алюминия и продолжают перемешивание при 80–150 °С в течение 0,5-5 часов, после чего отделяют от смеси порошок, который промывают от неорганических примесей с отделением твердого вещества и высушивают в сушильном шкафу при 140-160 °C, затем полученный продукт подвергают активации в печи при 220-300 °C.
БЫСТРЫЙ И МАСШТАБИРУЕМЫЙ СПОСОБ ПОЛУЧЕНИЯ МИКРОПОРИСТОГО
2-МЕТИЛИМИДАЗОЛАТА КОБАЛЬТА(II)
Патент №2711317, 25.09.2019 г.
Предложен способ получения микропористого 2-метилимидазолата кобальта(II), включающий этапы, на которых смешивают 1,1-1,5% щелочи, 2,7-3,1% соли кобальта(II) и 4-6% 2-метилимидазола в воде (остальное), при температуре 15-30°C в течение 0,1–3 часа, выделяют осадок посредством фильтрования или центрифугирования и промывают водой с отделением твердого вещества, далее проводят сушку потоком горячего воздуха при 100-150°С в течение 1-8 часов, затем активируют в динамическом вакууме не менее 10–3бар при 150-200°C в течение не менее 3 часов.

Технический результат – повышение сорбционной ёмкости по отношению к газам и парам.
СПОСОБ ПОЛУЧЕНИЯ МИКРОПОРИСТОГО ТРИМЕЗИАТА МЕДИ(II)
Патент №2718678, 25.09.2019 г.
Изобретение относится к области химии и химической технологии, а именно к координационной и синтетической химии металл-органических координационных полимеров, обладающих сорбционной ёмкостью, в частности к способу получения микропористого тримезиата меди(II), включающему этапы, на которых в этиловом спирте растворяют тримезиновую кислоту и добавляют водный раствор соли меди(II) с получением смеси, в которой следующее соотношение компонентов, масс.%:

  • 50–80% спирта,
  • 5–10% тримезиновой кислоты,
  • 10–20% соли меди,
  • вода — остальное,

причем смесь нагревают при 20–100°C в течение 0,5–5 часов с периодическим добавлением по каплям 0,5–2%-ого раствора щелочного агента или добавлением щелочного агента в количестве от 0,5 до 2 мольных частей на каждую мольную часть соли меди, выделяют осадок, который охлаждают до 20-30°C, очищают последовательной обработкой этанолом и дистиллированной водой или водным раствором этанола с концентрацией 10–30% и высушивают на воздухе при 70-80°C до появления у порошка фиолетового цвета.

Технический результат патентуемого решения заключается в увеличении сорбционной ёмкости по отношению к газам и парáм за счет увеличения площади поверхности и объёма пор готового продукта.
СПОСОБ ПОЛУЧЕНИЯ ФЕНОТИАЗИНА
Патент №2664801, 14.10.2016 г.
Изобретение относится к способу получения фенотиазина, заключающемуся в сплавлении дифениламина с элементарной серой в присутствии каталитических количеств йода с последующим охлаждением и перекристаллизацией, отличающемуся тем, что кипячение полученного осадка проводят в толуоле в течение 50-60 минут, затем охлаждают до 70 °C, добавляют этиловый спирт, кипятят полученную смесь в течение 50-60 минут и охлаждают.

Технический результат: разработан новый способ получения фенотиазина, отличие которого заключается в новом способе перекристаллизации фенотиазина-сырца, позволяющем получить продукт с более высоким выходом и чистотой.
СПОСОБ ПОЛУЧЕНИЯ 2-МЕТИЛИМИДАЗОЛА
Патент №2486176, 17.11.2011 г.
Настоящее изобретение относится к способу получения 2-метилимидазола, включающий смешение 40% водного глиоксаля, ацетальдегида и водного аммиака с последующим выделением целевого продукта посредством дистилляции, отличающийся тем, что используют 25% раствор аммиака, смешение ацетальдегида с аммиаком проводят при температуре 0÷5°С, после чего, при температуре не выше 60°С добавляют предварительно очищенный электродиализом от примесей глиоксаль, реагенты берут в соотношении аммиак:ацетальдегид:глиоксаль=2:1:1, реакцию проводят при температуре 90-95°С в течение 3-х часов, также, выделяют целевой продукт путем вакуумной дистилляции при остаточном давлении 0,5-1,5 кПа и температуре паров 120-140°С с предварительной отгонкой воды. Технический результат: разработан новый способ получения 2-метилимидазола, отличающийся высоким выходом и качеством целевого продукта и упрощением процесса его выделения и очистки.
Расскажите о своей задаче
Свяжитесь с нами по телефону или просто заполните форму ниже:
Оставляя свои контактные данные в этой форме, вы даете свое согласие на обработку персональных данных